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FOREWORD ;

This report documents the results of testing a lightweight MHD channel {

and diffuser which were developed for the Air Force by Maxwell ;
Laboratories, Inc. The period of testing was from March 1977 through ¥
December 1978; the report was submitted in January 1980. This test §

program was done under Project 3145, Task 314326, at the Aero Propulsion
Laboratory (APL). The authors{ﬁéssrs. James F. Holt and Jerome Pearson,
wish to express their appreciation for the valuable assistance in 3
running tests and setting up instrumentation, to Messrs. D. C. Rabe,
J. L. Knight, and W. C. Bourne of APL, Flight Dynamics Lab personnel
Messrs. Roger E. Thaller and pavid L. Banaszak; to the employees of
Universal Energy Systems Messrs. R. Darrah, R. Clericus, G. Wolfe, and
others for assistance in running tests and operating the facility.
Acknowledgment also is due to Messrs. R. F. Cooper and R. L. Verga, H
and Dr. P. E. Stover of APL for their contributions toward making possible “
the MHD program. We also acknowledge the help of Dr. D. W. Swallom,

formerly of Maxwell Laboratories, Inc., who helped set up the channel

and diffuser installation and contributed advice on the test program.
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SECTION I
INTRODUCTION

A diagonal conducting wall MHD channel with fiberglass external wall
was developed with the goal of light weight, to deliver 200 kW for a
series of tests including three 20 sec runs spaced in time by 20 seconds
each (Reference 1). The channel and lightweight diffusers were built and
delivered by Maxwell Laboratories, Inc., under contract F33615-76-C-2001.
This report describes the main results of tests conducted by AFAPL in
evaluating the channel and its design. The purpose of the tests was to
establish a minimum operational 1ife rather than to test constancy of
operation.

Table I summarizes test results which are explained in some detail
in the following sections.

A description of vibration test results is placed in a separate
section of the report.

The channel and diffuser performance design goals were met, and the
channel and diffuser after 235 tests of 32 minutes total were still in
good operating condition. Vibration measurements over the first few

dozen runs indicate that the channel did not suffer any mechanical fatigue.

Vibration measurements were conducted by Flight Dynamics Lab (FDL)
for the purpose of determining the level of vibrational power density at
failure were the structure to fail, or for determining a tolerable
operating level of vibration intensity in the more fortunate case, which
was encountered, wherein the channel stayed intact. We did not attempt
to increase the vibration artificially for the purpose of 1ife testing.
The system was not specially shock mounted or treated in any special
way to reduce vibration.

Dissecting the channel after the complete test series showed no
evidence of interelectrode arcing.

e e
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TABLE I

SUMMATION OF TESTS
Total number of tests 235.
Duration of tests, approximately 5 to 60 sec.
Total channel run time, 32 minutes.

Maximum DC power generated, 240 kW.

Maximum vibrational channel wall acceleration, 70 g.

Typical channel spectral vibration energy density, 10'2 gZ/Hz.

Initial end-to-end channel cold resistance, over 150k ohms.

NEPNT N A O S

[P

-t

A

‘ Final end-to-end channel cold resistance, 100k ohms.

Initial end-to-end channel hot resistance, 1700 ohms.

- —
PURE P TN

Final end-to-end channel hot resistance, 80 ohms.




AFWAL-TR-80-2021

SECTION II
TEST SETUP
1. MHD TEST SETUP

The channel design goals were 200 kW electrical power, and at least
three successive tests of 20 sec separated by periods of 20 sec resting
time, at that power level.

Figure 1 shows the installation. Water cooling circuits for individual
electrodes of the diagonal conducting wall MHD channel are shown in the
appendix. The rate of water flow to the channel was 20% less than the
amount specified by Maxwell for the tests. For that reason the first
tests were limited to 5 seconds' duration or less; the risk of overheating
the electrodes was thought to be too great to run tests of longer duration.

The MHD channel was cooled with deionized water. The diffuser was
cooled with tap water. The combustor and nozzle were cooled with treated
water. Leakage resistance to ground, from the treated water-cooled
load bank, was in the neighborhood of 200 to 300 ohms. See the appendix.
Since the MHD channel load resistance was in the neighborhood of 6 to
10 ohms for maximum power, possibly 5% of the load power was hidden in
water leakage paths of load bank and diffusers. Numbers for total
delivered power, quoted for the tests, do not add this hidden power.

The load bank leakage circuit resistance appeared to be linear up to
40 voits; beyond that voltage there is no linearity data. The voltage
on the load bank for maximum power tests was typically 1300 volts.

In the first few power tests, a previous seeder calibration curve
was foliowed; by pre-weighing the quantity of cesium carbonate seed
powder placed in the seeder hopper, and timing the run-out of seed from
observed voltage data during power tests, the seed for these first tests

was found to be going through the seeder unusually fast. Seed rates
were ultimately based on the observed seed run-out rate data.
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In the first power test series, runs LWC 004 through 013, the seed
was sieved through 20 and 40 mesh screens. This produced an exceptionally
uniform seed that flowed unusually fast through the seeder. In the later
tests, very fine seed was mixed into the double screened material so that
the mixture resembled the seed used in the original calibration curve.
Run-out measurements showed that the seed of the later tests did follow
the original calibration curve fairly well. The very fine seed was
approx. 0.001 inch in diameter.

Fuel jets for the combustor were 8 stainless steel tubes of approxi-
mately 0.040 inch i.d. A filter in the fuel supply line dropped the
fuel pressure considerably. The fuel flow rate measured with a rotary
flow meter for toluene vs. pressure drop between fuel tank and combustor
is shown in the appendix. This data taken before the start of power
testing, by using a flame tube substituted for the MHD channel, was
found to be different after approximately 100 power tests with the
channel. The preset pressure on the fuel tank had to be increased to
give the proper flow rate for the later tests. The cause of the change
was not ascertained. A description of the MHD test facility and general
operating conditions are given in AFAPL-TR-74-99 (Reference 2).

Nominal operating conditions for the MHD channel tests are given in
Table II1. The MHD channel load circuit and magnetic field profile are
shown schematically in Figures 2 and 3. The load resistor consisted of
a bank of stainless steel tubes with bypass switches arranged so that
the load value could be changed over a range of approximately 4 to 32 ohms.
See the appendix for the resistor schematic. The ballast resistors were
chosen according to proportional scaling of axial position of electrodes,
from the ballast resistor distribution used in diagonal conducting wall
channel tests from previous research (Reference 2).

The channel inlet transition piece was grounded to the frame of the
facility at the combustor end; the downstream or diffuser end was the
high voltage nositive end, and the diffuser, also at that voltage, was
insulated from ground and was spaced so that its outlet was approximately

e . e ——— o
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TABLE 11

NOMINAL OPERATING CONDITIONS

Channel
F Inlet, 2.5 X 10.0 cm (1 X 4 in)
Outlet, 7.3 X 14.0 cm (3 X 5.5 in)
§ Length, 106 cm (41 5/8 in)
Number of electrodes, 70
Electrode thickness, 0.635 cm {0.¢5 in)
Coolant, deionized water, 113 gpm at 102 psig
Diffuser
Length, 96.5 cm (38 in)
Coolant, untreated water, 111 gpm at 35 psig
Combustor

Fuel, toluene, flow rate 0.15 kg/sec

Oxidizer, gaseous oxygen, flow rate 0.6 kg/sec
Seed, cesium carbonate, flow rate 30 to 50 grams/sec
Burn time, 5 to 60 sec

Pressure, 130 psig

Flow

M 2 inlet to channel
Static pressure inlet to channel, 1 atm

Load Resistance 6 to 10 ohms
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18 inches from the exhaust stack. The exhaust of the diffuser traveled

through open space for this distance and was water quenched in the

exhaust stack.

Usually the thermocouple and accelerometer leads were disconnected
from their amplifier channels during power generation tests, although
some later temperatures were taken with the magnet on.

The timing of pilot flame, fuel, oxygen, and seeder was set so that
the pilot flame came on about 2 sec before the main combustor flame
came on; oxygen was turned on just before the fuel; after somewhat less
than 1 sec of main combustor flame the seeder was turned on, The seeder
was turned off about 1 sec before the main combustor flame came on. The
MHD magnet was operated continuously; typically it was started about
30 to 60 sec before firing the combustor.

2. VIBRATION TEST SETUP AND PROCEDURE

The channel is constructed of a series of hollow copper coolant tubes
which serve as electrodes, separated by ceramic insulation and covered
by a layer of 2 cm (3/4 in) thick fiberglass. The coolant tubes are
connected externally by plastic tubing to complete the water flow system.
The inside dimensions of the channel vary from 2.5 x 10 ¢cm (1 x 4 in) at
the rocket exhaust inlet to 7.3 x 3.6 cm (2 7/8 x 5 3/8 in) at the
diffuser; the channel length is 106 c¢cm (41 5/8 in). The channel has end
flanges bolted to the nozzle and to the exit diffuser. After the
electrically conductive rocket exhaust has travelled the length of the
MHD channel, it is slowed in the diffuser and exhausted to the atmosphere.
The Channel is clamped at the flanges to vertical beams mounted on the
false floor of the test stand. The 96.5-cm long diffuser is likewise
supported by a beam 180 cm from the exit flange of the MHD channel.
During power generation the large magnet faces are rolled into position
close around the channel.

Accelerometers were chosen to measure the channel dynamic responses
because of their simplicity and accuracy. The severity of vibration can
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be inferred from channel acceleration, and the vibratory displacements
can be derived from twice integrating the accelerometer outputs. Strain
gages could be used to provide a direct readout of vibratory strain, but
would prove very difficult to mount and calibrate on the irregular
fiberglass channel.

The MHD channel wall accelerations were sensed by the 12 Columbia
Research Laboratories Model 902H accelerometers numbered as shown in
Figure 4. 0dd numbered accelerometers were used to determine the channel
transverse vibration in the horizontal plane and, by using the differences
in response between 1 and 3, 5 and 7, and 9 and 11, to determine the
horizontal breathing modes of the walls. Similarly, the even numbered
accelerometers were used to determine the MHD channel transverse and
breathing vibrations in the vertical plane.

After MHD run number LWC 13, three of the 902H accelerometers were
moved to a mounting block on the combustor flange. These accelerometers,
labelled x, y, and z in Figure 4, were used to measure the longitudinal,
transverse, and vertical accelerations, respectively, of the combustor
flange.

The accelerometer outputs were conditioned by Intech Model A2318
automatic-gain-controlled amplifiers and recorded in a portable instrument
package by a Leach Model 3200A FM tape recorder. A datametrics Type SP105
time-code generator provided a 1000-Hz, amplitude-modulated, IRIG G time
code which was recorded on the tape. A voice signal was also recorded
during each of the MHD runs. The instrument package was configured
for 115 VAC power, which was available in the control room. A block
diagram of the on-site vibration data acquisition system is shown in
Figure 5.

MHD run number LWC 24 was the last record on which vibration data
were collected. Between LWC 24 and LWC 68, a signal proportional to the
voltage generated by the MHD channel was recorded on track 7 of the
recorder. This signal was obtained from a voltage divider with

T NV,
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bandpass 0 to 2 kHz. At run number LWC 68, this network was electrically
trimmed for a bandpass flat within 3% from zero to 10 kHz.

Accelerations were recorded on 16 MHD test runs during May-July of
1977, as listed in Table III. Each record was approximately 30 seconds
long, so that the actual MHD firing time of 3-6 seconds could be recorded
with certainty. The signal proportional to the MHD-generated voltage
was recorded during 14 runs, as listed in Table III.

To properly record starting transients during the first 0.1 second,
the amplifiers were locked into pre-calculated gain settings during the
last 15 test runs. Between tests, the accelerometers remained on the
channel and the instrument package remained in the MHD facility control
room. During MHD electrical power testing, however, all the accelerometers
were disconnected from the Intech amplifiers.

Magnetic tapes recorded during the tests were returned to the Flight
Dynamics Laboratory for analysis and retention. A block diagram of the
FDL analysis system is shown in Figure 6. The data were played back on a
laboratory recorder meeting IRIG Standard No. 106-72 and converted to
digital form. These digitized data were used for time histories with
24 microsecond resolution. Using the Fast Fourier Transform, power
spectral densities of all accelerometer signals were computed from zero
to 500 Hz with a resolution of 1.22 Hz and from zero to 10 kHz with a
resolution of 6.79 Hz.
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TABLE 111
DATA RECORDED DURING MHD CHANNEL TESTS
Date MHD MHD Firin
1977 Run No. Time (Sec Data Recorded Comments
' May
E 4 001 3.5 (est) Accel No. 1-12 No. 4 bad
6 002 1.7 (est) No. 1-12 No. 4 bad
6 003 3.5 (est) No. 1-12 No. 4 bad
June
f 10 012 4 (est) No. 1-12 No. 4 bad
t 10 013 4.5 (est) No. 1-12 No. 4 bad
x July
26 014 6.9 Accel's No. 1, 3-7, 9,
10, 12, x, y, 2
26 015 5.6 "
27 016 3.2 "
27 017 3.3 "
27 018 5.6 "
27 019 5.7 "
" ! 27 020 5.8 “
“ 28 021 5.6 "
28 022 5.6 .
3 28 023 5.6 "
: 28 024 5.6 "
‘ Sep (SEP 19, 1977 ACCELEROMETERS REMOVED & WIRES DISCONNECTED)
' 20 052 5.3 MHD Output Voltage  Recorder @ 30 ips
yj 20 053 5.7 MHD Output Voltage Recorder @ 30 ips
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TABLE III (Concluded)

Date MHD MHD Firin

1977 Run No. Time (Sec? Data Recorded

20 054 5.3 MHD Qutput Voltage
20 055 4.8 MHD Qutput Voltage
20 056 5.6 MHD Output Voltage
20 057 5.7 MHD Qutput Voltage
20 058 6.4 MHD Qutput Voltage
29 068 4.5 MHD Qutput Voltage
29 069 5.7 MHD Output Voltage
29 070 5.0 MHD Qutput Voltage
29 074 4.5 MHD Qutput Voltage
29 075 5.3 MHD Qutput Voltage
29 076 5.8 MHD Output Voltage
29 077 5.8 MHD Output Voltage

10
—— o e ]
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Comments

Recorder @ 30
Recorder @ 30
Recorder @ 30
Recorder @ 30
Recorder @ 30
Recorder @ 60
Recorder @ 60
Recorder @ 60
Recorder @ 60
Recorder @ 60
Recorder @ 60
Recorder @ 60
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SECTION III
MHD CHANNEL RESISTANCE AND POWER TESTS
V. FIRST TEST SERIES, LWC 001/LWC 013

a. Channel Resistance Tests

Tests were consecutively numbered LWC xxx with x representing the
numerical digits. Table IV gives a synopsis of the entire test run
program. A current source applied through a sensing resistor in series
with the longitudinal leakage resistance path of the MHD channel served
in the first series of tests to determine the channel leakage resistance
during flame. This approach was the same as that used in previous work
(Reference 3). Cold end-to-end resistance of the channel by ohmmeter
was approximately 100,000 ohms or greater.

Photographs of the voltage across the MHD channel and across the
sensing resistance allow determination of the longitudinal leakage
resistance. Figure 7 shows the schematic of the leakage resistance
measuring circuit, while Figure 8 shows signals recorded during
application of the flame without seed or magnet. The magnet during these
resistance tests must be rolled away from the vicinity of the channel so
that the residual magnetic field does not impart induced emf in channel
that will hide the low value of voltage drop when the approximately
40 volts source of current is used. If much less applied voltage is
used, as in an ohmmeter, the MHD induced voltage accompanied by the
earth's magnetic field will cause interference with the resistance

measurements.

Since the diffuser was cooled with tap water, leakage of current
through the water circuit of the diffuser to ground had to be accounted
for. Measurement showed the resistance to ground through the water path
of the diffuser was 1070 ohms with the water temperature arcund 60°F.
The value would be expected to vary depending on the conductivity of the
water, deposit of impurities on the water hoses, and water temperature.

1
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In the third run with the lightweight channel the longitudinal
resistance from the oscilloscope, is 1660 + 200 ohms. However, this
value, measured with flame in the channel, shows that the original
insulation resistance of the channel is sufficient to make the leakage
in<t3ynificant compared to the normal 10 ohm MHD power load resistance

circuit.

It was decided on the first flame run with the channel {no magnet),
that since the cooling water flow rate specification for the channel
was only 80% of the designed rate, the propellant rate would be reduced,
in an effort to cut down the heat transfer rate to the walls of the
channel. If the channel stood this initial heat flux the following runs
would be done at an increased propellant rate. After the first run,
which lasted for about three seconds, observation of the channel interior
showed a discolored strip and eroded spot on the electrode wall about
two thirds downstream of the channel inlet. The strip was perpendicular
to the axis of flow on all four walls; one electrode wall had erosion
and more discoloration than the other parts, and was also dished out
about 1/16 inch deep and about 1 inch diameter. The electrode wall had
apparently been covered about that depth in some areas with alumina in the
final smoothing out of the channel and this spot was the first instance
of major flaking of the alumina. Although the presence of the alumina
covering the electrodes may have not been intended in the design, it was
apparently applied by the technician finishing the interior of the channel.
I ‘er tests more of this alumina coating came off the electrode walls;
o' v 2 side walls there appeared to be no alumina coating; there the
jaurvidual electrode screens could be seen. We filled the particularly
rough spot with castable alumina, cured it overnight with a heat lamp,
and, upon successive firings of the channel, observed that the patch
appeared to adhere rather well.

The excess alumina coating inside the channel seemed to flake off
considerably after the first run, for there were apparently abundant
flakes of alumina inside the channel after the run. It seemed that the

jnitial thermal shock of heating and quick cooling loosened the coating.
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Successive firings of the channel quickly caused the electrode walls to
be unusually rough, mostly resulting from removal of the surplus alumina
coating plus unevenness in electrode placement. This roughness, developing
quickly in the early tests, did not seem to worsen much in the remaining
tests. Early photographs of the channel interior after a few tests r
(Figure 9) and of the interior after over about 100 tests (Figure 10)

i show little difference in its appearance, although in the earlier picture
some cast magnesia flakes remain stuck to the electrode walls. :

After the first test we thought there may have been a transverse
shock at the location of discoloration in the channel, about two thirds
k. of the way downstream. Calculation of the location of the hypothetical
: shock was not accurate enough to be convincing. Pressure data on the
first run were not valid, unfortunately. However, since it appeared
that the channel was being overheated at that location, and investigation
showed that the water-cooling circuit was not at fault, it was decided

(PRSP

to run succeeding tests with full 0.6 kg/sec propellant rate. Since in :
the fellowing tests the channel functioned well with full propellant &

flow rate, we concluded that there was probably a "standing" shock in
the first run. E

b. Power Generation Tests

The first power run LWC 004 (Figure 11) was conducted with 1.66 Tesla
magnetic field strength instead of the full 2.3 Tesla, in order to guard
against inadvertent short circuiting in the channel or overloading of

the circuit that might happen when a new test series is started. Seed

was started at the beginning of the flame and was stopped after three

] seconds. During the firing there are noise pulses visible on the signal
spaced at slightly less than 1/2 second apart; these should be disregarded.

1 In following oscilloscope traces similar noise pulses may be seen; if
] they are regular in time, they have been introduced from the data system
f and should be disregarded.

|
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The most apparent characteristic of the voltage signal of LWC 004 is
the gradual buildup of voltage. From previous observations of the seeder
gear acceleration, it was apparent that the voltage buildup is very
similar in rise time to that of the seeder rpm during the first second
or two of voltage. The seed rate was shown to be about 107 by weight of
propellant, so that the seed should have been plentiful to produce
maximum electrical conductivity in the flame. However, since the seed
had been sifted between 20 and 40 mesh screens, so that there was not
any very fine material, it was surmised that the coarse character of the
seed, which had not been tried in previous power tests with other channels,
prevented sufficient evaporation of seed in the combustor., The flame may
have been under-sceded, as a result of insufficient seed evaporation.
Considering the one half to one second rise time of the seeder motor
speed we conclude that the gradual rise of voltage seems reasonable, and
had there been adequate seeding from using finer seed material, it seems
the voltage would have risen to a higher level. In previous power tests
with other MHD channels this gradual rise of voltage was not observed.
Perhaps when finer seed is used, enough of the extra fine material feeds
around the seeder gear so that the rise time of voltage is much faster
than the rise time of the seeder speed. Even when fine seed is used,
after the initial sharp rise of voltage to near maximum there is a more
gradual buildup to maximum,

In run LWC 004 (Figure 1la) the DC power into the load resistor was
60 kW; an assumption of an additional 15% dissipated in the ballast
resistors gives total delivered power of 80 kW DC. Scaling power
proportional to the square of applied magnet field strength gives 150 kW
at 2.3 Tesla. If one extrapolates the DC power to a steady-state plateau
as indicated by the shape of the voltage output, scaling yields consid-
erably more than 200 kW DC power as the ultimate potential total output
for 2.3 Tesla.

In the same run LWC 004, the profile of the electrode voltage is an
approximately linear rise with distance along the MHD channel (Figure 12).
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The successful test at 80% of full magnetic field strength indicated
that the test at full magnetic strength should go well; apparently there
were no glaring oversights or faults in the load circuit or instrumentation.
Figure 11b shows the oscilloscope trace for the second power test with
2.3 Tesla magnetic field strength, to be LWC 005. At about one second
into power delivery the load resistor arced to ground from the high
potential end of the resistor. There was then a sudden drop in voltage
which lasted for about 2 seconds until seeding stopped. The arc then t
extinguished, and some noisy voltage signal is seen during the last two :
secands of the run. Inspection of the load resistor, which consisted '
of a bank of vertical water-cooled stainless steel tubes showed that
the tubes had swayed during the run, probably from vibration or noise,
and touched the grounded frame of the load bank, thus setting up the arc.
This fault was repaired and the third power test was undertaken.

In the third power test, LWC 006 (Figure 13a) the load bank arced ‘
to ground from a different place as result of moisture released on the
previous power test; although the moisture had been wiped off the
insulators, there was sufficient moisture left to cause an arc to start
along the surface of the insulator, and the oscilloscope trace of the
voltage across the load resistor looked very much lTike that of the
previous test. By extrapolating the voltage curve beyond the time of
the start of the arc, as before, the expectable total delivered DC power
level should have been well in excess of 200 kW, probably in the
neighborhood of 230 kW. The arc on LWCH 006 started earlier and lasted
for over 3 seconds.

Voltage profiles for LWC 005 and LWC 006 up until the time of the
load arcing were similar to that of the first power test LWC 004 except
that the maximum voltage was higher; a fairly linear voltage distribution

was observed.

After repairing the load resistor bank no more difficulty with load
resistor arcing was met, and succeeding tests proceeded well from that

standpoint.

18
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Power tests immediately following those of the load arcs were made
with reduced magnetic field strength, as in LWC 004.

In LWC 007 (Figure 13b) the load resistor power reached a DC level r
k of 80 kW, with an estimated total delivered power of 115 kW. Several .
3 tests were conducted with the same operating conditions, in which these

results were repeated, as shown by LWC 011.

Observation of channel pressure profiles indicated supersonic flow
throughout the channel. The cold end-to-end resistance of the channel
continued to be on the order of a hundred thousand ohms or greater. !

2. SECOND TEST SERIES, LWC 014/LWC 051

In this series of tests, measurement of the hot channel wall resistance,

i

- p———

vibration measurements, and measurement of power output were performed.

-

The data indicated an unusually low resistance between the inlet end of
the channel and a point about one third of the distance from inlet to
outlet, although initial inspection showed nothing wrong in the test

s

setup. Eventually a misconnection was discovered in the patch board
used to connect the channel electrodes to the load and instrumentation.
After correcting this error the channel behaved well and voltage profile

r——

e - e ——

and other data appeared ncrmal. During this series of tests valid and
valuable vibration data was obtained, and some debugging of the system

operation and equipment was carried out. The vibration data are dis-

cussed in a separate section.

B e R

i 3. THIRD TEST SERIES, LWC 052/LWC 235, POWER TESTS

The objectives were to maximize MHD power output, and to measure
the end-to-end resistance of the hot MHD channel without seed application.

E In this test series the power was maximized with respect to O/F

(oxygen-to-fuel) ratio and with respect to load resistance, with fixed

0.6 kg/sec propellant rate. The maximum power vs O/F was obtained at
‘ 0/F = 2.5. Keeping this 0/F ratio, varying the load resistance, and
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with a seed rate of 40 to 50 grams/sec cesium carbonate, maximum
power was produced at 6 to 10 ohms.

In run LWC 062 (Figure 14a) calculation of DC load power from
V2/R, where V is the maximum DC load voltage on the high speed data
£ system and R is load resistance, yielded 190 kW; calculation of DC load
power from VI, where I is the measured maximum DC load current on the
strip chart, yielded 168 kM.

e e s
e e ol b

In LWC 064 (Figure 14b) V2/R was 179.5 kW while VI totaled 169 kW. ' 4
Adding an additional 15% to the lower values for dissipation of power .
in the ballast resistors gives approximately 200 kW (196 kW) total

; power delivered. (Itemized calculation of power dissipated in the ballast ¢
resistors has shown that their total dissipation is 15% of the load i
power. ) .

Arcing between certain electrode pairs was suspected, since the
apparent voltage difference was seen to be low, or opposite the desired

| polarity for power production. These electrode pairs were mostly in

‘ the downstream group of electrodes that attach to the ballast resistors.
One electrode pair in the upstream ballast electrode group exhibited F
opposite polarity part of the time. However, examination of the voltage %
differences between these questioned electrode pairs, and also voltage

differences between unquestionably properly working electrode pairs, :

. showed no positive evidence of arcing anywhere. This result correlates
with the observation of "no visible evidence of arcing" after the channel
was dissected. Although the average or DC level of voltage seemed

{ abnormal for the suspected electrode pairs, a normal amount of fluctuation
seemed to be present in the difference voltage. Unfortunately differential
pickups were not used for measuring differential electrode voltages.

The difference electrode voltage was determined by subtracting voltages
that were picked up in single-ended circuits with the ground reference

g at the channel inlet potential. Since there was a 10'4 sec time delay

] ] between consecutive data channels, the noise appearing on each channel
introduces noise in the subtracted values. An estimate of the noise

20
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expected when consecutive voltage channels are suBtracted shows that the
expected noise js significant. It was not possible to determine
positively from the numerical data whether any arcing existed. From
observing voltage profiles taken later, on a peg wall channel, it
appears that the particular nonlinearities seen in the LWC voltage
profiles were caused by non-optimum ballast resistance values, and by

a few small mis-calibrations of the voltage pickup divider resistors.

The overall conclusion is that there was no arcing, and that the
local undesired or opposite current flow was caused essentially by
unsuitable values in magnetic field strength and/or ballast resistances
at the channel ends or possibly by other faulty local phenomena. Since
the magnetic field strength as well as plasma velocity is decreasing at
the downstream end of the channel, the power production capability of
the channel there is low or perhaps even negative per unit length of
channel under certain conditions, and to properly match the ballast
resistors to the generator at the downstream end may require some
experimentation.

An advantage of using the finer seed, which was used in all tests
after LWC 013, is that the hash or noise fluctuations on the load voltage
are diminished by the finer seed. As in previous experience, the level
of noise is dependent also on O/F ratio, although no effort was made to
investigate this effect.

Figure 15a and b represents load voltage in typical runs during which
the noise or hash level is about as low as ever obtained with the
powdered seed, and in which the feeding of seed is fairly constant. In
run LWC 076 although the average value of seeding appears to be constant
there are voltage fluctuations of 1/10 to 1/8 second duration which
appear to be caused from seeder fluctuations. The constancy of DC
voltage in run LWC 069 shows that the seeder functioned perfectly. As
in previous test programs, the technique of introducing powdered cesium
carbonate was adequate but not dependable. There is typically a gradual
rise of DC level after the first half second of load power. This rise

21
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may be connected with the gradual seeder speed increase, and possibly
with heating the MHD electrodes. Reference 5 discusses calculations
of rise time for heating typical electrodes.

Run LWC 211 (Figures 16 through 29) was typical of the later, long
duration runs; the seed stopped near the middle of the run at about
40 sec of main combustor running. Calculation of VI for the load power
gives 200 kW in the main load resistance. Adding 15% for power dissipated
in the ballast resistors gives a total of 230 kW delivered to the external
load circuit during seeding.

Figure 18, also run LWC211, is a typical voltage profile plotted for
8.0 sec of computer run time, which is about 4 sec after start of
combustion. The only jog in the central portion of the channel voltage
is at around electrode 45, about two-thirds the channel length from the
intet. This jog occupies 2 electrode spaces, which is the distance
between data contacts there. It could be caused by various deficiencies
other than arcing; for example, serious offsetting of the electrode wall
may contribute to it; bad electrical contract or miscalibration of signal
channels may cause it. The unevenness in the curve at the end portions
is systemic and is apparently caused by wrong adjustment of the values
for the trimmer resistors to match the channel operating characteristics.

Some channel electrode water temperatures are shown in Figures 21
through 29. The 70 electrodes here are numbered consecutively starting
at the entrance end of the channel. The length of the water path should
affect the water temperature. Although electrode 1 has theoretically
the greatest heat flux rate, its water temperature is less than 70 F at
the end of the run. Electrode 50 shows a water temperature increase
of 150 F with an actual water temperature of 200 F, close to boiling.
As seen in the appendix, the water circuit for electrode 50 shows only
two electrodes in the water circuit. Electrode 35 also shows a temperature

rise of 130 F, giving a total water temperature of around 180 F. This
electrode is in a circuit with three other electrodes. The last electrode,

70, has a water temperature near 200 F, and it is individually cooled.
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There does not appear to be a correlation between water temperature and
length of the water path through the associated electrodes, for a )limited
sampling consisting of about 5 water exits. In carrying out the long
duration runs, the water was either chilled artificially, or the

F advantage of the outside air temperature was used to lower the water
temperature below normal room temperature. Without this precaution,

the water would have boiled after about 7 seconds of running the combustor.
A plot of the relative differential water temperature drop AT/TS, where
AT is the temperature drop upon cutting out seed, and TS is the temper-
ature rise above water inlet temperature with seed applied, Figure 30,
shows that the ratio increases with axial distance from the channel inlet.
This means that the additional percent of total heat flux to the channel
wall while seeding is less near the channel inlet. Since the ratio of
wall roughness (electrode stepping) to channel height is greater near

b the channel inlet, the variation of AT/TS with distance seems plausible.

The stepping offsets between electrodes would also be expected to
introduce scatter in this data. An estimate of electrode surface wall
temperature based on observed water temperature indicated that the
original electrode ceramic was possibly being somewhat overheated, with

a temperature around 2200 to 2300K, leading to some loss of ceramic

material as was found when the channel was finally taken apart at the

end of testing. (As the ceramic ablates or wears away, the ceramic
surface temperature will decrease; eventually there will be an equilibrium
surface temperature at which the ceramic will not readily ablate.) Since

the electrode copper protects the insulator, one would not expect
B appreciable insulator spalling; in the dissected channel we found the la
insulators to be in good condition.

The combustor wall exit water temperature (Figure 19) and the nozzle
water exit temperature (Figure 20) have a considerable amount of noise
F fluctuation; it is not related to MHD load current, since there is
appreciable noise before the start of load current.

[ Figures 31 through 33 show data plots for run number LWC 205, an
extended duration run which lasted for a minute. The seed was not

23
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continuously flowing for the run duration. The two interruptions of

load power in the latter half of the run are caused by seed temporarily

sticking in the powder seeder hopper at the inlet to the seeding gear.

Multiplying load voltage by load current (times 1.15, to account for

ballast resistor power) gives 238 kW maximum at end of the run, and .
218 kW DC power in the first half. The axial distance voltage profile '
closely matches the profile for run LWC 211 and others. The sharp drop
in voltage at electrode 58 is seen also in a voltage profile for a
peg-wall MHD channel operated with similar resistance values in a

' separate test program. Considering the observed test data and the
resistance distribution, the sharp drop appears to be caused by using

a ballast resistance series of overall too great a resistance scale in
the downstream end region. To remove the drop and smooth the profile,
experimentation is necessary. The voltage profile remained essentially
consistent through all tests starting from the first power runs.

T o —p———

2o y e

4. VOLTAGE SPECTRAL ANALYSIS

A point of interest is the fluctuation of the electrical output from
the MHD generator. During several runs the voltage output of the L
' generator was sampled and analyzed by a spectral analyzer. A typical L
result is shown in Figure 34 on a linear scale from zero to 20 kHz 3

| in frequency and on a logarithmic scale in voltage output. The voltage
l output is broadband, with no significant energy at discrete frequencies.
r ’ These data were recorded with a data channel frequency response that was

’ flat from zero to 10 kHz.

24




. e o

AFWAL-TR-80-2021

SECTION IV
VIBRATION TEST RESULTS

Analog time histories of the accelerometer responses were first played
back through an oscillograph to determine the character of the signals.
Examples of these time histories are shown for run number LWC 13 in
Figures 35-56. Accelerometer Number 4 responses were not obtained on
this run because of electronic problems.

The typical MHD run is characterized by an abrupt, high-amplitude
transient lasting about 0.02 second as the mainburner is turned on,
followed by a steady-state firing period of several seconds, and climaxed
by a cutoff transient of about 0.05 second. In these time histories,
most of the steady-state firing response is deleted in order to show
the details of the starting and ending transients. The pilot burner
was turned on before these recgrds begin. For all the plots, the
overall rms acceleration of the plotted portion is shown in the upper
right-hand corner in g rms, summed over the frequency range of zero
to 10 kHz.  The time resolution of these computer-generated plots is
24 microseconds. During the starting and ending transients, instantaneous
accelerations as high as 75 g were recorded. The acceleration peaks
during steady-state firing were normally in the 15 g range. The rms
values range from 2.5 to 10 g rms for the various accelerometers.

These time histories are random signals which are non-stationary,
especially at the beginning and at the end. The steady-state portion
of the firing, however, is nearly stationary and can be analyzed
spectrally. All the spectra presented in this report represent the
steady-state portion of the MHD firings. Examples of frequency spectra
for the individual accelerometers are shown for run number LWC 13 in
Figures 57-67 for the full frequency range of the instrumentation. The
frequency resolution of these acceleration spectral densities is 6.787 Hz.
Because the accelerometers have a flat frequency response to 6 kHz and
the tape recorder is 3 dB down at 10 kHz, the decrease in response above
5 kHz is apparently a characteristic of the rocket exhaust excitation.
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These acceleration responses were normally in the range of 0.01 gz/Hz 1
except for narrow peaks at 2-3 kHz which reach 0.05 - 0.1 gZ/Hz. The i

1
highest spectrum measured was accelerometer Number 11 for run LWC 13 ;
(Figure 66). This accelerometer, on the side of the channel nearest the 'i
rocket nozzle, showed a peak of 1 gz/Hz at a frequency of 4500 Hz. ?

in g's, which is shown for each accelerometer in the upper right corner.

A measure of the overall energy in the response is the rms acceleration ’
The highest overall acceleration recorded was by accelerometer Number 11
:
k.

during run Number LWC 13, 7.11 g rms summed over the frequency range
of zero to 10 kHz.

To determine the effects of continued firings on the vibration
responses, data were analyzed at selected runs over a long series of
firings. The firing numbers and durations are shown in Table III. An
expected change due to deterioration of the channel walls would be a
change in the damping of the vibration modes. These modes may be (;
identified with individual response peaks in the lower frequency range k
of the acceleration responses. By measuring any change in the widths
of these response peaks over a series of runs, a change in damping of
the mode would be observable. An increase in damping could be caused,
for example, by the development of cracks in the material. !

To show the lower frequency modes more clearly, accelerometer
responses were analyzed from zero to 500 Hz. The results for run Number
LWC 3 are shown in Figures 68-76, those for run number LWC 13 in
Figures 77-86, and those for run Number LWC 23 in Figures 87-98.
Accelerometers 1, 2, and 4 are missing from run LWC 3, and accelerometers
2 and 4 are missing from run LWC 13. For run LWC 23, accelerometers 2, 8,
and 11 were replaced by accelerometers x, y, and Z on the combustor

flange.

These responses showed 1ittle indication of any change in damping
with wear on the channel. Although the random character of the rocket
exhaust excitation results in fluctuations in the relative amplitudes
at different frequencies from run to run, distinct modes can be identified.
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Accelerometer Number 3, for example, on the side of the channel near the
diffuser end, showed a prominent mode at 53 Hz. The width of this mode
during run LWC 3 (Fiqure 68) showed a Q of 18, from the relation

Q = f/Af, where Af is the frequency bandwidth at the half-power points.
This same response peak at 53 Hz during run LWC 13 (Figure 78) and during "
run LWC 23 (Figure 88) had the same bandwidth, to within the accuracy

of the 1.22 Hz frequency resolution, indicating little or no change in
damping for this mode over 20 firings. Similar results were obtained
for the mode at 43 Hz. This method, however, is limited to detecting
gross damping changes because of the 1.22 Hz frequency resolution. The
resolution is limited by the amount of data available during one firing.

The responses from a single firing were also analyzed with respect

to accelerometer position along the channel, to determine any change in Q
character of the excitation along the channel length. No clear pattern i

of distinct differences was found, either in the overall rms accelerations j
or in the frequency content, between the diffuser end and the rocket '?

end of the channel.

The responses from different firings show different overall amplitudes, '
{ which may be due to differences in the propellant flow rates and ]
combustion temperatures. The rms responses of firing Numbers LWC 3 and :
3 LWC 23 can be compared directly. The rms responses for firing Number
i ‘ LWC 13 were not obtained.

The individual accelerometer frequency responses show several peaks
which might be interpreted as overall vibration modes of the channel.
To distinguish between bending and breathing modes, the accelerometer
signals on opposite sides were combined by both adding and subtracting
the signals. These responses are shown for run LWC 13 in Figures 99-108.
The results showed no correlation between the motion of opposite sides
= of the channel. Apparently the modes of the structure were so highly
damped by the visco-elastic fiberglass coating that the four sides

moved independently.

+
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The fatigue life of the MHD channel can be estimated as follows.
The MHD channel is approximated as a beam with pinned ends of height h
and length L, as shown in Figure 109. The transverse deflection of
the wall vibrating in the nth mode is
= in(DTXy o5
(x,t) = yOS1n( } sin mnt (m

In

where y 1is the peak deflection. The moment M at any point is given by
0 g

the relation M = EIS, where E is Young's modulus of the material, I is

the moment of inertia of the beam cross-section (I = bh3/12), and b and
h are the width and height of the beam, respectively. The maximum stress
occurs at the surface of the beam and is given by o = Mh/2I.

From these relations we derive
h
s =y (5 (M) (2)

To find the actual displacements of the MHD channel walls from the
accelerometer frequency responses, the latter were transformed by 1/n2
and converted to rms displacement. These results of wall deflections
for runs LWC 12 and LWC 13 are shown in Table V. These deflections can
be used to estimate the stress levels and thus the expected fatigue life
of the structure. The maximum deflections observed during these runs
is seen to be 0.00431 meters rms for accelerometer 12.

To evaluate the rms stress produced by this response peak, refer to
Figure 99, which is typical. This particular plot is an average of
accelerometers 1 and 3, near one end of the beam. From this and the
other figures the peak at 17.3 Hz appears to be the first mode, so the
53 Hz peak may be identified as the third mode, n = 3.

From the channel wall geometry, L is 1 meter, h is 0.6 cm, and
we may assume E = 3 to 5 million PSI (2.1-3.5 x 10'0 N/m2), from
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TABLE V

CALCULATED MHD CHANNEL RMS DISPLACEMENT

Run No. Pickup No. Displacement rms (m) ]
LWC 12 1 0.00459 "
3 0.00263 y
5 0.00352
7 0.00334
6 0.00123
8 0.00392
9 0.00407
10 0.00123 ¥
1 0.00404 |
12 0.00431
LWC 13 1 0.00395 .
’ 3 - 0.00280 .
5 0.00286 ’
7 0.00283 |
; 6 0.00124
| 8 0.00366
9 0.00354 ;
4 10 0.00104

11 0.00399
0.00365
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measurements on similar fiberglass. From AFFDL-TR-74-112, page 514,

data are given for the o-N curves (N cycles to failure at stress level o)

for 181-S Type 11l glass fabric. Applying these values gives the
following results:

E, 100 N/m2(108 ps1) o, 107 N/m%(10° PSI) Lifetime

2.07 (3.0) 2.4 (3.48) 105 hrs
2.76 (4.0) 3.2 (4.64) 7.9 hrs
3.45 (5.0) 4.0 (5.80) 31 min

These results show that the fatigue life is so strongly dependent on
the value of E that no reliable prediction can be made. A more refined
estimate could be obtained by directly measuring the modulus of the
material in a laboratory force-deflection test, and then measuring the
stress levels during firing with strain gages.
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SECTION V
DISSECTION OF MHD CHANNEL

After the tests had been completed, the lightweight channel was taken r
apart to examine closely the amount of wear or damage to the electrodes
and insulators. The channel was sawed lengthwise as indicated in
Figure 110. Observation of the interior of the channel showed that there
was substantial loss of insulator material between the electrodes, and
greater loss of zirconia ceramic material from the cast portion of the
electrode around the nichrome screen. See also Figure 111. Approximately
half of the zirconia was gone from the electrode fillings. The insulators
between electrodes were cupped below the electrode surfaces as much as
1/16 inch in several places. In one place, at the very entrance to the
channel, the insulator was undercut to approximately 1/8 inch. The
channel sidewalls were hardly worn away at all; it was not possible to
detect any substantial difference between new and worn conditions of
the sidewalls.

Figure 112 shows some anode wall electrodes (top of test rig), near
the upstream end of the channel. Here the insulator and zirconia filling
can be seen to be considerably worn away. Note that the electrode metal
does not show any appreciable wear. There were no water leaks in the
channel.

Figure 113 shows some cathode wall electrodes near the middle of the
channel which also evidence some deterioration of the electrode insulators
and zirconia fillings. 1In the middle of the figure there is one electrode
that showed atypical deterioration. One side of the copper electrode
material was badly consumed; the electrode screen can be seen apparently
still in good condition, and apparently the other side of the electrode
metal is in good condition. This electrode appears to be possibly not
positioned right originally, with some alumina used to smooth out the
difference in level between it and the adjoining electrodes. This
particular electrode was the only one in the channel that was severely
consumed, although it still did not leak water. Because of the type

N
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of construction of the electrodes, the water passages were inherently
well protected unless mechanical forces should cause rupture.

Figure 114 is a photograph of one of the sidewalls, both of which
looked in like-new condition, after the tests. Here the screens can be
seen as ridges with fine detail stripes across them. The black dark rows
next to the screens are the slightly recessed zirconia fillings around
the screens. Qutside the dark rows, the copper edges of the side
electrode frame structure can be discerned. Since the sides of the
electrode frames were on a slant with respect to the channel axis, the
side structure of the frames were narrower than the electrodes, causing
the sidewall assembly to look crowded. In spite of this obvious handicap,
of having narrow structures and spacings to work with, the sidewall
assemblies had surprisingly good integrity after the tests. The nature
of the electrode structure and the construction procedure of the
electrodes apparently led naturally to considerably more difficulty in
positioning the electrodes than sides. To achieve acceptably smooth walls
there should be a machining process during or after channel assembly,
which would machine out the offsets built into the hand assembly process,

The channel was in surprisingly good overall condition after the tests;
the channel was obviously very well and carefully built. From the
appearance of the channel interior, as well as from the test data, one
would surmise that the channel could have run for many more minutes
or perhaps hours without failure.
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SECTION VI
CONCLUSTONS

A composite lightweight MHD channel and lightweight diffuser were
tested for some 235 separate firings with a total time of 32 minutes,
after which the channel and diffuser were still delivering full rated
power of 200 kwe. Water temperature checks of the channel electrodes
indicate that some of the electrodes were experiencing original local
surface temperatures of about 2300 K. After the tests, the interior of
the channel was intact and considerable erosion of the electrode ceramic
fillings was observable, and moderate erosion of the alumina between the
electrodes was visible. The sidewalls suffered no apparent impairment,
and there were no water leaks.

Vibration measurements showed that the maximum accelerations on the
channel were in the neighborhood of 70 g, during start up and stop.
No breathing modes of vibration were detectable, and no structure fatigue
could be detected.

After the test program the channel was dissected, and close inspection
of the electrodes, including separating some individual electrodes,
showed no evidence of interelectrode arcing or damage by seed. This
result is due possibly to a careful regime of purging moist air from
the channel and continued bleeding of dry nitrogen into the channel
during off times.

The implications of this test program for future development and
design of MHD equipment is that the composite approach for channel
structure is viable, and that lightweight diffusers can also be developed
using comparatively lightweight composite outer walls tied to the metal
duct interior. Generally, larger high power channels for portable
generators should be designed for about 250 to 500 Mw/m3. Although the
overall power density for this channel was in the neighborhood of
40 Mw/m3, this program still provided the confidence that a significant
Tifetime could be reasonably expected when lightweight composite channels
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and diffusers are built for portable power systems of the 10 to 50 MW
magnitude of electrical power. In scaling the estimated weight of such
high power channels, one should realize that the channel tested in this
effort was built primarily for performance, and secondarily for light
weight. As a result the weight is considerably greater than necessary;
the size is large enough to contain a boundary layer of some 0.5 cm thick
near the exit. A design study (Reference 8) has claimed that a 25 MNe
channel-diffuser could be produced with a weight of 115 kg, not including
coolant, with a channel maximum local power density of 250 MN/m3.

The interpretation of the "wall resistance” tests directly in terms
of resistance of the channel walls may not be entirely correct according
to the following discussion. As the signals show, the "wall resistance"
increases in each test with time. This effect persists no matter how
many prior runs have been made without seeding the plasma. It seems
that after a few runs all the seed must have been removed from the seeder
and associated plumbing, and the plasma is then unseeded; the resistance
of the unseeded plasma should be of the order of 104 times the resistance
of the cesium seeded plasma. Resistance of the seeded plasma from end
to end of the channel is of the order of 10 ohms as evidenced by the
apparent internal resistance of the generator when loaded. When the
channel is run without seed and without magnetic field applied, the
beginning resistance is typically a few tens of ohms, then the resistance
gradually climbs to around 80 ohms after a few seconds. This behavior is
that of a channel having previously a few dozen seeded runs; the new
channel exhibited one or two thousand ohms without seed. The phenomenon
of increasing resistance with time could be explained as follows.

Seed penetrates to considerable depth into the insulators when the
channel is run a few dozen times with seed applied. Applying the unseeded
flame bakes seed out of the insulator over a shallow depth; after flame
shutdown seed from deeper in the insulator migrates to the surface region
previously baked out. Re-application of unseeded flame repeats the
phenomenon. The "wall leakage" conductance being measured may be partly
comprised of conductance through the plasma boundary layer as a result
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of seed bakeout. This still does not account for the fact that there is
the same power delivered to the external load at the beginning and end

of a run when seed is applied; seed baking out into the boundary layer
should lead to a boundary layer leakage current because the velocity there
does not support a significant induced emf. However, if the seed bakeout
plasma conductance component is near the edge or slightly beyond the
boundary layer momentum thickness, then perhaps this component could add

to the generated voltage during seeding, at least enough to make up for any
additional conductance leakage.

To understand the wall leakage conductance problems a special
program of investigation is needed.
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APPENDIX
CHARACTERISTICS OF EXPERIMENTAL EQUIPMENT

Some details of the system test setup are recorded here that will r;
help to explain the procedure and interpretation of data. 1

Figure 115 is a schematic of the main load resistor bank. This
resistor consists of 22 stainless steel water-cooled tubes connected at
each end by hoses of approximately 1 foot length; each hose attaches
to a grounded water manifold. By lumping the resistance to ground into
two equivalent resistors, the MHD channel load circuit can be simplified
to the equivalent circuit of Figure 116. A volt-ampere curve for con-
duction through the load resistor water is given in Figure 117. The
equivalent circuit was developed from a consideration of synthesizing
a parallel path equivalent to 138 ohms. Since the diffuser and down-
stream end of the channel is connected to ground only through water ' 4
connections which are of comparatively high resistance, while the .f
upstream of the channel is separated from ground only by one channel i_

' insulator and the intervening plasma, the leakage resistance of the ‘
water paths is approximated by the 320 ohm resistance. The 243 ohm

' water resistance is shunted by the much lower upstream channel resistance.

| Load circuit ballast resistors are given in Figure 118.

1 ‘ Table VI gives the channel and diffuser water supply flows.
Figure 119 shows a top view of the layout of channel and the water
manifolds, while Figure 120 is a schematic of the cooling water
connections to the diffuser.

Cooling water connections for the various MHD channel electrodes are
shown in Figure 121. The upstream (near the channel inlet) electrodes
are afforded the shortest coolant paths, and the length of coolant path i
gradually is increased with distance downstream. This is the Maxwell

arrangement of connections.
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TABLE VI

CHANNEL AND DIFFUSER WATER DATA

MHD Channel: ;

Deionized water for MHD channel. Supply pressure at channel manifolds,
102 psig. Exits of channel manifolds empty into tank about 5 feet above
level of MHD channel; the tank at atmospheric pressure.

Exit end of channel, manifold flow = 46.5 gpm

Entrance end of channel, manifold flow = 66.5 gpm

Lightweight Diffuser:

Pressure at hard water supply, inlet to facility, 35 psig while running;

50 psig when not running.

Inboard return manifold flow = 37 gpm

Outboard return manifold flow = 60.3 gpm

The fuel flow rate was calibrated by collecting fuel over measured
time, and also by observing a calibrated flow rate turbine meter.
Figure 122 gives a curve for flow rate vs. pressure drop, as experienced
in the beginning of the tests. This curve was ascertained from tests
with a flame tube in place of the MHD channel. Later MHD tests showed
that this curve was not being followed closely. The fuel flow rate was
a few percent lower than predicted by this curve, and fuel pressure
setting had to be thus adjusted. No reason for this change was found.

The oxygen flow rate was determined from observations of static
pressure upstream of a choked venturi of 0.772 cm diameter. (Static
pressure in this case was essentially the same as total pressure; thus,
reliance on a total pressure pickup was not necessary, although there
was measurement of the total pressure also.) Flow through the venturi
is calculated by the equation, m = 0.185 P/T1/2, where m is flow in kg/sec,
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P is the upstream total pressure, and T is the absolute temperature.

Discussion of the equation is given in Reference 7. The coefficient 0.185
was independently derived by APL, and by Systems Research Laboratories

in earlier work. r:

In Figure 123 an early seed flow calibration is shown, along with two
typical points obtained for seed flow during actual tests. It is seen
that the calibration follows the early curve fairly well. However, the
dotted curve was not relied upon for knowing the seed level; the seed
rate was determined by weighing the seed amount before a series of tests,
and averaging the flow rate over the time taken to run out of seed. The
time was determined from observing the oscilloscope voltage vs. time.

In the first series of tests, the seed flow rates were about 507 greater
than those shown in the Figure 123 data, because the seed was specially
sifted through 20 and 40 mesh screens, which permitted smoother flow

than ordinary. In the later tests, seed containing 50% very fine .:
material was used, for which the flow is well represented by the figure.

Table VII gives channel dimensions as compared to APL diagonal
conducting wall and heat sink peg wall channels.
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INLET DUCT 70 DIAGONAL ELECTRODES OUTLET bucT

- i
\ - 3

MHD CHANNEL

P

L7 AN i
7 AN \ 3
12 BALLAST MAIN LOAD 12 BALLAST
RESISTORS RESISTOR RESISTORS

Figure 2. MHD Channel Load Circuit
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ACCELEROMETERS
MOUNTED ON
MHD CHANNEL
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Figure 5. Block Liagram of Data Recording Package
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MHD CHANNEL

DIFFUSER

DIVIDER

TO SCOPE

DIVIDER
18.2K 5K

TO SCOPE

* Adjusted to give 4000 ohms to gnd, total incl divider.

Figure 7.
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Circuit for Measuring Channel Resistance
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; Figure 8. MHD Channel Resistance Signals, LWC 001, 002, and 003
‘ (Scale 2 V/div, 1 sec/div)
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Figure 9. Lightweight Channel (LWC) After Several Power and
Vibration Tests
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Figure 11. Voltage vs. Time, LWC 004 and 005
(vertical 400V/cm, horizontal 1 sec/cm)
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Figure 13. Voltage vs. Time, LWC 006 and 007
(Vertical 400v/cm, horizontal, sec/cm)
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LWCIT 062

LWCH 061

U ——— B UGN

Figure 14. Voltage vs. Time, LWC 062 and 064
(Vertical 400V/cm, horizontal 1 sec/cm)
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Figure 15. Voltage vs. Time, LWC 069 and 076
(Vertical 400V/cm, horizontal 1 sec/cm)
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Cathode Wall Electrodes Near Middle of Channel
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Figure 116. Main Load Resistor Circuit and Leakage Through Water Paths
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Figure 119. Top View, Schematic of MHD Channel and Diffuser Water
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Figure 121. MHD Channel Electrode Water Circuit Schematic
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